On Rado conditions for nonlinear Diophantine equations

نویسندگان

چکیده

Building on previous work of Di Nasso and Luperi Baglini, we provide general necessary conditions for a Diophantine equation to be partition regular. These are inspired by Rado's characterization regular linear homogeneous equations. We conjecture that these also sufficient regularity, at least equations whose corresponding monovariate polynomial is linear. This would natural generalization theorem. verify such hold the $x^{2}-xy+ax+by+cz=0$ $x^{2}-y^{2}+ax+by+cz=0$ $a,b,c\in \mathbb{Z}$ $abc=0$ or $% a+b+c=0$. To deal with equations, establish new results concerning regularity configurations in $\mathbb{Z}$ as $\left\{ x,x+y,xy+x+y\right\} $, building recent result x,x+y,xy\right\} $.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

On Some Diophantine Equations (i)

In this paper we study the equation m−n = py,where p is a prime natural number, p≥ 3. Using the above result, we study the equations x + 6pxy + py = z and the equations ck(x 4 + 6pxy + py) + 4pdk(x y + pxy) = z, where the prime number p ∈ {3, 7, 11, 19} and (ck, dk) is a solution of the Pell equation, either of the form c −pd = 1 or of the form c − pd = −1. I. Preliminaries. We recall some nece...

متن کامل

On Some Diophantine Equations (iii)

In this paper we study the Diophantine equations ck(f +42fg+49g) + 28dk(f g + 7fg) = m, where (ck, dk) are solutions of the Pell equation c 2−7d2= 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2021

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2020.103277